
Algorithms and Software for PDE’s
with AMR

Dan Martin
Applied Numerical Algorithms Group

Lawrence Berkeley Laboratory

April 23, 2002



Outline

1. AMR Overview

2. Algorithm refinements for AMR

3. Chombo

4. Particles and Chombo

5. Examples



Adaptive Mesh Refinement (AMR)
(Berger & Oliger, 1984):

Approach:

• locally refine patches of the domain where needed to improve solution

• each patch is a logically rectangular structured grid

– better efficiency of data access

– can amortize overhead of irregular operations over large
number of regular operations

• refined grids are dynamically created and destroyed



Refine in time as well as space (subcycling)
Advantages:

• better efficiency (CFL condition)

• everything at same CFL number can improve advection performance

Disadvantage:

• Cause of much of the work!

1
n+ 2

t
10 2

levellevellevel

t

t

sync sync

sync

n+1

n

t

refinement
level



Algorithm refinements for AMR

• Discontinuities in Grid Spacing

• Coupling coarse and fine solutions appropriately

• Regridding/reinitialization



Coupling coarse and fine solutions

• Fine grids – need boundary conditions from coarse grids – interpolated in
time and space.

• Coarse grid – may need to see effect of fine-grid solution
example: flux correction for conservation.

• maintain constraints in the presence of AMR

– conservation – flux correction due to mismatch

– divergence constraints (incompressible flow, MHD)

– freestream preservation – incompressible flow; scalar initialized to a
constant should remain constant.



Conservation:
To maintain conservation, the difference between the coarse grid flux and the
sum of the fine grid fluxes is “refluxed” into the coarse cells adjacent to the fine
grids.



Discontinuities in Grid Spacing
• In a single-grid world, rely on grid regularity for accuracy – cancellations,

etc.

• Local refinement breaks grid regularity – loss of accuracy can result

• Lack of smoothness at grid interfaces is another common problem.

• If not careful, can lose the accuracy benefit of local refinement from
additional errors induced at coarse-fine interfaces

• Example – Poisson’s Equation (∆φ = ρ)

– “Elliptic Matching condition” – need both φ and ∂φ
∂n to be continuous at

the coarse-fine interface. Otherwise, charge induced at interface.

– Accuracy – because interpolated value is divided by h2, need at least
quadratic interpolation for fine-grid boundary conditions.

– Solution is to define composite operators which satisfy both of these
constraints by using flux-matching and quadratic interpolation.
Result: closer coupling of coarse- and fine- solutions.



Truncation Errors at Coarse-fine interfaces

L, top

L, bot

R

F

F

F

D∗F =
1

∆x
(FR − 1

2
(FL,top + FL,bot))

=
1

∆x
(F ((i+

1
2
)∆x, y)− (F ((i− 1

2
)∆x, y) + C(∆x)2))

=
∂F

∂x
+O(∆x) (not O(∆x2))

∂Umod

∂t
+∇ · Fmod = τ = O(∆x) at C/F boundary

= O(∆x2) elsewhere



Discretizing Elliptic PDE’s
Naive approach:

• Solve ∆ψc = gc on coarse grid.

• Solve ∆ψf = gf on fine grid, using coarse grid values to interpolate boundary
conditions.

Such an algorithm yields coarse-grid solution accuracy on the fine grid (Bai and
Brandt, Thompson and Ferziger).

ψc ≈ ∆−1(g + τ c). Using ψc to interpolate boundary conditions for fine
calculation introduces coarse-grid error on fine grid.



Solution: compute ψcomp, the solution of the properly-posed problem on the
composite grid.

∆cψcomp = gc on Ωc − C(Ωf )

∆fψcomp = gf on Ωf

[
ψ

]
= 0,

[∂ψ
∂n

]
= 0 on ∂Ωc/f

The Neumann matching conditions are flux matching conditions, and are
discretized by computing a single-valued flux at the boundary.

top
edge

edge
i+1/2, j

i, j-1/2

edge
i, j+1/2

edge

v

v

u

u

bottom
edgeu

x x

x x

G

G

x

x

top

bottom

Modified equation: ψcomp = ψ + ∆−1τ comp, where τ is a local function of the
solution derivatives.



Divergence constraint

• incompressible flow: ∇ · ~u = 0.

• Use projection method to ensure that divergence constraint is met.

• Because AMR timestep does subcycled level-by-level advances, resulting
solution will not satisfy divergence constraint across the entire hierarchy of
refined levels.

• Solution – apply projection based on composite operators during
synchronization step to ensure constraint is met.



Freestream Preservation
• For incompressible Navier-Stokes code, compute incompressible advection

velocities with which to compute advection.

• Since these velocities are computed on a level-by-level basis, not
divergence-free in a composite sense; refluxing for conservation results in a
constant field losing its const-ness

• Define auxiliary advected scalar set to 1 → Λ 6= 1 is a measure of failure,
which can be used to compute a correction, applied to subsequent advection
velocities (lagged correction).

∇ · ~u = η(Λ− 1), η = O(
1

∆t
)



Algorithm Adjustments for AMR

• explicit algorithms generally “easier” than implicit

– implicit normally requires elliptic solves at synchronization

– coarse-fine boundary conditions not always obvious

• casting in terms of fluxes at faces simplifies matching conditions at
coarse-fine interfaces

• Crank-Nicolson (everybody’s favorite 2nd-order semi-implicit method) can
be problematic for AMR.

– Presence of sharp source terms can cause C-N problems (not L0 stable).

– Can swich to backward Euler (L0 stable, but 1st order in time).

– Second-order Runge-Kutta method (Twizell, Gumel, Arigu, 1996), gives
2nd-order in time, L0 stability, but costs an additional elliptic solve.



Time-dependent Ginsberg-Landau Equation results
Laplacian(φ) with Crank-Nicolson vs. Backwards Euler



Regridding/reinitialization
• Want to regrid often, to follow changing solution, minimize “buffer” refined

cells, but...

• Interpolate new fine-level data from coarse-level data – if conservative, not
necessarily accurate or smooth enough

– smoothed interpolation possible (additional expense, accuracy?)

• May need to recompute quantities like pressure (incompressible flow),
freestream preservation correction, etc. (re-initialization can be expensive)



Chombo is a collection of C++ libraries for implementing block-structured
adaptive mesh refinement (AMR) finite difference calculations.

• Mixed-language model: C++ for higher-level data structures, Fortran for
regular single-grid calculations.

• Reuseable components. Component design based on mapping of
mathematical abstractions to classes.

• Build on public-domain standards: MPI, HDF5.



History

Chombo is an outgrowth of a single group developing AMR algorithms for a
broad range of complex multiphysics applications: astrophysics, combustion,
shock dynamics, porous media flows, interfacial dynamics, turbulence, ...

Previous / related work: BoxLib (CCSE /LBNL), KeLP (Baden et. al., UCSD),
FIDIL.

The range of applications leads to a particular form of the standard design
criteria for software:

• Expressiveness: how well does the programming notation match the natural
mathematical description of the algorithm.

• Reuseability: how difficult is it to introduce new capabilities, or to apply the
software to new problems.

• Performance: how difficult is the program to tune, and how well does the
tuned code perform.



Expressiveness
C++ abstractions map to high-level mathemematical description of AMR
algorithm components (Chombo is an AMR developer’s toolkit).

x x

x x

xx x x x

x xx

BoxLayoutData, LevelData classes: encapsulate data defined on collections
of rectangles distributed over processors.
LevelData a; BoxLayoutData b;

a[Ind] = ...; // indexing returns reference to rectangular

array.

a.copyTo(b); // Copies valid data in a to b.

a.exchange(); // copies valid data in a to ghost cells in a.



Layered Design
The layers in Chombo correspond to different levels of functionality in the AMR
algorithm space.

• Layer 1: Multidimensional arrays and set calculus, data on unions of
rectangles mapped onto distributed memory.

• Layer 2: operators that couple different levels: conservative interpolation,
averaging between AMR levels, interpolation of boundary conditions at
coarse-fine interfaces, and refluxing operations to maintain conservation at
coarse-fine interfaces.

• Layer 3: implementation of multilevel control structures: Berger-Oliger time
stepping, AMR-multigrid iteration, Berger-Rigoutsos grid generation.

• Layer 4: complete adaptive PDE solvers. Current examples include elliptic,
parabolic, hyperbolic equations, incompressible flow.

• Utilities : HDF5 - based parallel I/O, ChomboVis visualization tools based on
VTk, Fortran support tools.



Reuseability
There are four mechanisms used in Chombo to enhance reuseability.

• Substitution of procedures that conform to an interface specification, e.g.
substitution of different Fortran subroutines for integrating various hyperbolic
systems of conservation laws on a single grid.

• Composition: higher-level functionalities can be obtained through
composition of different combinations of lower-level components. For example,
the Layer 2 tools for computing interlevel operations are used to implement a
broad range of elliptic, parabolic, and hyperbolic AMR operators and solvers.

• Reuse of control structures across various data structures using inheritance.
Berger-Oliger time-stepping requires only pointers to a pure virtual base class
that defines what is meant by advancing the solution in time, computing the
time step, etc. The derived class holds the data.

• Reuse of container classes using templates. BoxLayoutData<T> ,
LevelData<T> are templated on the multidimensional array type T. T can be
array of reals, integers; binsorted collections of particles; arrays with sparse
multivalued subsets.



Performance

Serial Performance:
High performance is obtained by computing bulk-rectangular grid operations in
calls to Fortran 77. The C++ rectangular array library provides access to pointers
to the data stored contiguously in row-major order. Chombo includes a macro
package to facilitate the use of this interface that also allows one to write
dimension-independent FORTRAN. This allows one to limit the use of C++
array operations to implementing sparse irregular calculations, which leads to
acceptable performance (≥ 80% of CPU time spent in Fortran for gas dynamics).

Parallel Performance:
For AMR, parallel performance is highly problem dependent. In applications
where it has been required, algorithms have been shown to scale to 100’s of
processors (CCSE / BoxLib).



Availability
Chombo can be downloaded from the Berkeley Lab AMR website. The Applied
Numerical Algorithms Group at LBNL has a long-term commitment to
supporting Chombo, with major enhancements to its capabilities (Cartesian grid
treatment of geometry, particle-grid methods) required to support the DOE
SciDAC applications in accelerator modeling, magnetic fusion, and combustion.

Stand-alone C interfaces to much of the Level 1 and level 4 functionality are also
under development with the AMR/CCA forum.



Particles and AMR in Chombo

• Currently implementing PIC algorithms in Chombo

• Templated container classes have allowed straightforward extension of basic
classes to particles.

• Algorithmic Issues:

– Transfers of particles across coarse/fine interface boundaries

– Particle → Grid and Grid → Particle transfers in the presence of
refinement boundaries (modified stencils)

– preventing self-induced effects.


